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ABSTRACT: Transitions between separation and contact modes are prevalent in rock mechanics. For stimulating tight
hydrocarbon reservoirs, the transfer of hydraulic load from hydraulically loaded to in-situ cracks, removal of hydraulic
load, re-fracturing, and application of cyclic loading are all examples involving contact and separation mode reversal.
We propose an interfacial damage model that incorporates all contact and separation modes by combining their corre-
sponding dynamically consistent Riemann solutions. Instead of commonly used penalty method and Lagrange multiplier
approach we propose a new regularization scheme—based on the interface displacement and separation velocity jumps—
that smoothens contact-separation mode transitions, remedies ill-conditioning that may arise by using penalty methods,
and provides a tunable maximum penetration. In addition, we propose an aperture-based regularization approach that
enables smooth transfer of hydraulic load to in-situ cracks. Numerical results, obtained by an h-adaptive spacetime
discontinuous Galerkin method, demonstrate accurate modeling of contact mode transitions and intersection of cracks in
hydraulic fracturing.

1 INTRODUCTION

Given that rocks are often under confinement pressure,
contact and friction play a critical role in rock mechan-
ics. For problems involving crack propagation and inter-
section, transitions between separation, contact–stick, and
contact–slip may occur. There are specifically several ex-
amples in the area of hydrocarbon reservoir characteriza-
tion and stimulation. In hydraulic fracturing the interac-
tion of a hydraulically loaded crack with in-situ cracks can
result in various mode transitions for both cracks. For ex-
ample, the hydraulically loaded crack can be arrested or
change direction by the in-situ crack or penetrate through
it. The fluid flow can also be diverted into the in-situ crack,
in which case it experiences a contact to separation mode
transition; cf. [1] for the review of such intersections and
the types of mode transitions that may be involved.

The inverse of the aforementioned mode transition,
i.e., separation to contact mode transition, occurs when
the hydraulic load is released and crack surface are
pulled back together. Understanding this transition, and
the transition back to separation mode due to the re-
application of hydraulic load becomes important in refract-
ing applications; cyclic application of the loads that better
stimulate a reservoir, as in [2,3], or re-fracturing a reservoir
to reactivate hydraulic cracks or increase its productivity,
cf. [4], are some applications that involve contact mode
transitions.

The most common numerical techniques for contact in-
clude penalty methods [5,6] and Lagrange multiplier meth-

ods [7, 8] In the context of rock mechanics and hydraulic
fracturing [3,9] use the cohesive model approach to repre-
sent fracture processes on crack surfaces. To model con-
tact, the former employs a penalty method while the latter
enforces the contact condition by using a Lagrange multi-
plier approach. It is noted that penalty methods allow an
unpredictable amount of interpenetration and can generate
stiff, ill-conditioned systems that might require extremely
small time steps for stability [10].

The contact formulation in [11] remedies the uncon-
trollable penetration of penalty methods by providing a
maximum tunable penetration without resulting in a stiff
system of equations. This approach is naturally formulated
for dynamic problems by formulating and combining local
Riemann solutions from various contact modes. However,
in its present form it cannot be applied to hydraulic frac-
turing applications as it does not correctly model contact–
stick to separation mode transitions. In the present work,
we propose a new regularization approach in the two di-
mensional phase space of normal separation and normal
separation velocity jump that remedies this problem, cf.
§2.2.2. Another aspect that is addressed in the present
work is the contact to separation mode transition encoun-
tered upon the intersection of a hydraulically loaded crack
with an in-situ crack. We propose an aperture-based ap-
proach to regularize the application of hydraulic load to
newly loaded crack segments. The proposed dynamic con-
tact conditions are incorporated in an interfacial damage
model. This contact / fracture model is used for the sim-
ulation of hydraulic crack propagation and intersection
problems and a simplified re-fracture problem in §3.
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2 FORMULATION

In this section we provide the formulation of an interfacial
damage model that also incorporates dynamically consis-
tent solutions for contact–stick and contact–slip modes.
Cohesive models are commonly used to represent nonlinear
material responses on a fracture surface. However, the en-
forcement of impenetrability condition and Coulomb fric-
tion relation is challenging for cohesive models. In lieu
of a cohesive model, we represent the process of material
degradation on a fracture surface by an interfacial dam-
age parameter D that ranges from zero for a fully bonded
interface to D = 1 for a fully debonded one. There are
two key components to the damage model. First, given
the traction and velocity states on the two sides of an in-
terface, dynamically consistent solutions for various con-
tact modes are obtained by the solution of local Riemann
problems in §2.1. Second as described in §2.2, by deter-
mining which mode(s) are active on a given point on a con-
tact/fracture interface, we linearly combine the aforemen-
tioned Riemann solutions to derive macroscopic traction
and velocity solutions. These macroscopic target solutions
replace the traction separation relation (TSR) that is used
in the context of cohesive models by specifying the traction
(and velocity) state of the interface based on the traces of
the solution from the opposite sides of the interface. Fi-
nally, in §2.3 we describe the process to smoothly apply
hydraulic pressure on newly connected fracture surfaces
to hydraulically loaded and propagating fracture network.
Contact/separation model transitions in hydraulic fractur-
ing are also described in §2.3.

2.1 Riemann solutions for different con-
tact modes

ξ1, e1

ξ2, e2

x1

x2

t

Γ P

(s−,v−)

(s+,v+)

(s̆, v̆±)

Figure 1: Local coordinate frame at arbitrary space-
time location P on a spacetime fracture surface Γ for
a problem in two spatial dimensions.
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Figure 2: Top zoomed view of the point P from fig.
1. While the target traction solutions are the same
s̆+ = s̆− := s̆, depending on a given contact mode
kinematic compatibility, normal and tangential com-
ponents of target velocities, v̆+ and v̆−, can be dis-
tinct from the two sides.

For completeness, this section provides a short overview
of different Riemann contact solutions from [11] with an
improved and modified notation. Bonded, contact–stick,
contact–slip, and separation are collectively called contact
modes. The solutions for individual contact modes are
obtained by solving local Riemann problems at a contact
interface. A local coordinate frame at an arbitrary space-
time location P on contact interface Γ is illustrated in fig.
1. The local coordinates are (ξ1, ξ2, t), and the frame is
oriented such that the ξ1-direction aligns with the spatial
normal vector on Γ from + to − sides. The quantities from
the opposite sides of Γ , which are decorated with super-
scripts + and −, define the initial data for the Riemann
problem. Distinct velocity traces, v±, and tractions, s±,
from the traces of solution fields from the two sides. Trac-
tions are defined by s = σ · n in which the same spatial
normal vector, n, is used to compute s+ and s−. The Rie-
mann values at a given point P on the interface include
components of the traction vector acting on the interface
and traces of the velocity components from each side of
the interface. We denote these by (s̆, v̆±), as shown in the
figure. Balance of linear momentum requires equality be-
tween the traction vectors obtained from the stress fields
on opposite sides of the interface. That is, s̆+ = s̆− := s̆.

The kinematic compatibility conditions on the inter-
face depend on whether the material interface is intact
(perfectly bonded), or in the debonded case, on the spe-
cific contact mode. The target velocities on Γ are equal
for bonded and contact–stick cases. For contact–slip case,
while the impenetrability condition implies the continu-
ity of target velocities in normal direction, v̆+

1 = v̆−1 , the
tangential components can be discontinuous due to slip
condition. Finally, in separation model, all components of
v̆+ and v̆− can be discontinuous. Figure 2 shows a top
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and zoomed view for the point P in fig. 1. Interior traces
of the solution are shown on the two sides of the interface
and target values between the two sides. As evident, un-
like target tractions, target velocities can be discontinuous
and Jv̆K denotes the corresponding jump.

The Riemann solutions are obtained by preserving the
characteristic values of the elastodynamic problem and en-
forcing kinematic conditions pertinent to a given contact
mode. For an isotropic material in linear elastodynamics,
the spacetime characteristic trajectories in all directions
are determined by the dilatational and shear wave speeds,
c±d and c±s ,

cd =

√
λ+ 2µ
ρ

, cs =
√
µ

ρ
. (1)

where ρ is the mass density and λ, µ are the Lamé param-
eters.

The definition of characteristic values, [11], uses the
impedance values given by,

Zi± :=
{

(cdρ)± i = 1
(csρ)± i = 2, 3

(2)

in which the index i corresponds to spatial directions in
the local frame shown in fig. 1.

After the solution of the local Riemann, the target val-
ues for contact–stick and bonded modes decorated with ST
and B respectively, are obtained as,

s̆iB = s̆iST = s̆i = si+Zi− + si−Zi+

Zi− + Zi+
+ Zi−Zi+

Zi− + Zi+
(v+
i − v

−
i )

(3a)

v̆Bi = v̆STi = v̆i = si− − si+

Zi− + Zi+
+ v+

i Z
i+ + v−i Z

i−

Zi− + Zi+
(3b)

the index i ranges from 1 to d the spatial dimension of the
problem. No summation convention is implied for repeated
index i. The quantities (si+, v+

i ) and (si−, v−i ) are shown
in fig. 2 for a 2D (d = 2) geometry. As expected from (3b),
we have v̆+ = v̆− := v̆.

In separation mode, v̆+ and v̆− are fully independent.
The Riemann tractions are, however, set equal to S, the
tractions specified by a particular fracture model or crack-
surface loading. In §2.3.2, we discuss in detail how hy-
draulic pressure is incorporated in the target value S. The
Riemann solutions for the separation case, decorated by S,
are then obtained by preserving the characteristic values
on each side of the interface,

s̆iS = s̆i = Si (4a)

v̆±Si
= v̆±i = v±i ±

Si − si±

Zi±
(4b)

Finally, the solutions for contact–slip mode are obtained
by enforcing continuity of normal component of target ve-
locity (Jv̆K1 = 0). This results in the same solutions for
normal direction to that presented in (3). For the tangen-
tial directions, target tangential traction components are
obtained from Coulomb friction law, resulting in possibly
distinct components for tangential velocity target values

(Jv̆Ki 6= 0, i = 2, 3). The solution for tangential direc-
tions resemble those for separation mode in (4), with some
technical details on how the direction of Coulomb friction
is determined. The reader is referred to [11] for detailed
derivation and expression for all the Riemann solutions.

2.2 Macroscopic target values and mode
regularizations

2.2.1 Macroscopic target values

At any given point at the contact interface Γ the damage
parameter D interpolates between bonded and debonded
target solutions,

s∗ := (1−D)s̆B +Ds̆D (5a)
v∗± := (1−D)v̆B +Dv̆±D (5b)

where subscripts B and D indicate Riemann values for
bonded (cf. (3)) and debonded conditions. Note that v̆B
in (5b) is not decorated with side ± since from kine-
matic compatibility condition, same target value is en-
forced on both sides as evident from (3b). The solution
for the debonded part, itself is first divided into contact
and separation modes. The relative part of contact to
entire debonded (1 − D) fraction, is denoted by η. Fi-
nally, the contact mode can take either the contact–stick
or contact–slip modes. The number γ denotes the ratio
of contact–stick to entire contact fraction. Since the Rie-
mann solutions for bonded and contact–stick modes are
the same, cf. (3)), there are only the three distinct modes
of bonded (B), contact–slip (SL), and separation modes
(S). Thus, considering different contact modes within the
debonded (1−D) fraction, the solution (5) can be written
as,

s∗ := aBs̆B + aSLs̆SL + aSs̆S (6a)
v∗± := aBv̆B + aSLv̆±SL + aSv̆±S (6b)

where

aB = 1−D +Dηγ (7a)
aSL = Dη(1− γ) (7b)
aS = D(1− η) (7c)

again in (6b) v̆B is not decorated with side notations ±
since from (3b) the stick velocities are the same for both
sides.

2.2.2 Determination of D, η, γ

At the top level of hierarchy of relative area fractions, the
value of D must be determined. Here we adopt the rate-
dependent interfacial damage model of [12,13] where dam-
age rate is given by the evolution law,

Ḋ =
{

1
τ̃ [1−H(〈Dt −D〉)] D < 1
0 D = 1

, (8)

τ̃ is a relaxation time, and Dt is the target damage value.
The function H takes the value of unity at zero and
monotonically decreases to 0 at infinity. Following [14],
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the particular form of H used in this work is given as
H(x) = exp(−ax). It is evident from (8) that under mono-
tonically increasing quasi-static loading, i.e., load increases
much slower than τ̃ , 〈Dt −D〉 → 0 and D → Dt. That is,
Dt is the damage value for the present interface condition,
if the loading had been applied under quasi-static condi-
tion. The positive part operator in 〈Dt −D〉 ensures that
D is a nondecreasing function of time.

We assume that Dt to be a function of bonded Rie-
mann traction (3a) through a scalar effective stress value
s̆. One particular choice is s̆ :=

√
〈s̆1

B〉2 + (βτ̆B)2 for
bonded Riemann tangential traction magnitude τ̆B :=√∑d

j=2

(
s̆jB

)2
and β the shear stress factor that controls

mode mixity. Finally, Dt is expressed as,

Dt =


0 s̆ < s,
s̆−s
s̄−s s ≤ s̆ < s̄

1 s̄ ≤ s̆
, (9)

where s and s̄ denote, respectively, effective traction
thresholds for the onset of additional damage evolution
and for attainment of the maximum damage rate, 1/τ̃ .
We refer to s̄ as the fracture strength.

The determination and analysis of η is one of the
main emphasis of this paper. In [11], this analysis was
provided for S = 0 in (4a). However, that analysis does
not carry over to hydraulic fracturing and in general cases
when nonzero S is applied on crack surfaces. The details
of the newly proposed approach are provided below. Fi-
nally, γ takes the binary values of {0, 1} based on whether
Coulomb slip condition is satisfied or not, under contact
mode. Specifically, γ = 0 when |τ̆B| > k

〈
−s̆1

B
〉

+ and one
otherwise, where k is the friction coefficient.

Figure 3: Maps of separation (η = 0) and contact
(η = 1) modes based on normal separation velocity
jump Jv̆S1K and normal displacement jump δ.

Figure (3) shows the 2D phase space for analytical η in
terms of nondimensional normal separation velocity jump
Jv̆S1K/ṽ and normal displacement jump δ′ := δ/δ̃. The
fracture scales ṽ, s̃, δ̃ are described later. Let u−1 and u+

1
be the normal component of displacements from − and +

sides. It is clear that the interface is in separation mode
(η = 0) if normal displacement jump δ := u−1 − u

+
1 is pos-

itive. Also, δ < 0 is unacceptable as inter-penetration is
not permitted. For δ = 0 the choice on whether contact
or separation mode holds depends on the velocity at which
the two sides of interface hypothetically separate. To clar-
ify this, among the three modes of bonded (B), contact–
slip (SL), and separation (S), it is only the latter that can
have nonzero normal displacement jump. Thus, from (6)
and (7c) we have,

Jv∗1K = v∗1
− − v∗1

+ = aSJv̆1K = D(1− η)Jv̆S1K (10)

where Jv̆S1K = v̆−S1
− v̆+

S1
. Clearly, the value of η has an

influence only if D > 0, otherwise the interface is fully
in bonded mode and as expected from either (5) or (6)
s∗ := s̆B , v∗ := v̆B . Thus, to determine the value of η
when δ = 0 we assume D > 0 in (10). If Jv̆S1K < 0, then
we must have η = 1; otherwise Jv∗1K < 0 which is not
permissible as it implies interpenetration given that δ is
assumed to be zero. On the other hand, if Jv̆S1K > 0 from
the two choices of η = 0 and η = 1, the condition η = 0 is
the physical choice, since it is a positive Jv̆S1K that can take
an interface already at contact mode (δ = 0, Jv̆S1K < 0)
back to separation mode. Thus, for δ = 0, the sign of Jv̆S1K
determines η, as shown in (3).

Next, we relate Jv̆S1K to traction quantities which are
generally easier to compute, particularly in hydraulic frac-
turing application. By plugging the values v̆±S1

from (4b)
in Jv̆S1K = v̆−S1

− v̆+
S1

and using the identity (3a) we obtain,

Jv̆S1K = 2Z̃1(s̆1
B − S1) (11)

where

Z̃1 := 2Z1−Z1+

Z1− + Z1+ (12)

is defined as the impedance of the interface for normal
waves.

Finally, the quantities in the axes of fig. 3 are normal-
ized by their corresponding fracture scales. This facilitates
choosing nondimensional parameters that are used in the
regularized version of η, followed shortly. In [15] fracture
scales are derived for a general cohesive model. The same
analysis can be extended to the damage model with evo-
lution equation (8) to obtain fracture displacement scale δ̃
and velocity scale ṽ,

δ̃ = τ̃ s̃

Z̃1
(13a)

ṽ = δ̃

τ̃
= s̃

Z̃1
(13b)

where the stress (strength) scale for the damage model is
s̃ = s̄ based on the particular form of Dt in (9). Thus,
equations (13), (11), and (12) yield the form of normalized
axis in fig. 3.
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Figure 4: Map of regularized η based on normal sep-
aration velocity jump Jv̆S1K and normal displacement
jump δ.

The binary map of η ∈ {0, 1} in fig. 3 cannot be readily
used in numerical setting. As described thoroughly in [11],
under separation to contact mode transition, there are sud-
den jumps in both tractions and velocities of the two sides
of the interface, as the relative velocity suddenly vanishes
and is translated into compressive stress. This necessitates
the regularization of η. Figure 4 depicts a regularized ver-
sion of fig. 3. The parameter δ′ < 0 denotes the maximum
nondimensional penetration permitted in the regularized
model, corresponding to displacement jump δ′δ̃. The par-
ticular form of the function that regularizes η from unity
to zero for δ′ from −δ′ to 0 and the exceptionally smooth
contact-separation mode transition behavior of this model
are described in [11]. Finally unlike cohesive models, this
model possesses a maximum penetration which can also
be numerically tuned without resulting in a stiff system of
equations or nonconvergence issues.

2.3 Application of hydraulic pressure

2.3.1 Pressure factor

By using a simplicial complex representation of cracks and
modeling their connectivity by a disjoint set data struc-
ture [16], the authors provide a means to transfer hydraulic
pressure to an in-situ crack when a hydraulically loaded
crack intersects it. This representation, however, only pro-
vides information whether a crack is hydraulically loaded
or not, resulting in two potential problems. First, if a
hydraulically-loaded crack intersects a long crack, clearly
not all the points on that crack surface will immediately
experience the hydraulic pressure exerted at the connec-
tion of the two cracks. Second, similar to separation to
contact transition discussed in §2.2.2, traction and veloc-
ity fields experience a sudden jump if the full hydraulic
pressure is suddenly exerted on newly connected crack sur-
faces; the in-situ compressive stress between crack surfaces
will suddenly jump to a potentially much greater hydraulic
pressure if the hydraulic load is immediately transferred.
We provide an aperture-based approach that regularizes

the transfer of hydraulic load to newly connected crack
surface and remedies both aforementioned problems.

Figure 5: Regularization of the applied hydraulic
pressure on a crack surface based on the apertures
of connected crack segments.

Figure 5 shows the intersection of a hydraulically
loaded crack, segment CA, with an in-situ or otherwise
unloaded crack, i.e., the extension of DE. The goal is to
regularize the applied hydraulic pressure for the sample
segment AB. Accordingly for an arbitrary point P, such as
A and B, we define,

δPmax = maxi (δPi
) (14)

where δPi are the apertures of the connected cracks to point
P, as shown in the figure for points A and B. Then the
pressure factor fp or point P is defined as,

fp(P ) =


0 δ′P ≤ 0
δ′

P

δ̄′ 0 < δ′P < δ̄′

1 δ̄′ < δ′P

(15)

where δ′P = δPmax/δ̃ is the maximum aperture at point
P, normalized by displacement scale δ̃, cf. (13a). The
nondimensional parameter 0 < δ̄′ � 1 basically regular-
izes the application of hydraulic load from δPmax = 0 to
δPmax = δ̄′δ̃.
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Figure 6: Sketch of four oriented perforations inter-
acting with single natural fracture oriented vertically.

2.3.2 Regularized hydraulic pressure

It is evident from (15) that fp for a point P tends to one
when maximum aperture δPmax δPmax reaches the thresh-
old value of δ̄′δ̃. Pressure factor fp basically specifies the
fraction of hydraulic pressure that is enforced. For the
remaining fraction, 1 − fp, a target normal traction that
would have been active in the absence of hydraulic pressure
should be enforced. Accordingly, the normal component of
target separation traction, cf. (4a) is given by,

S1 = −
{
fpph + (1− fp)〈−s̆1

B〉
}

(16)

where ph is the hydraulic pressure at the given space and
time position. The second term in the interpolation 〈−s̆1

B〉
is the compressive traction under bonded (contact) mode.
Given that S is one of the three contact modes within
debonded part (D fraction) of damage model, cf. §2.2.1
and (6a), (5a), the (1− fp) part in (16) cannot withstand
any tensile traction. The positive part in 〈−s̆1

B〉 ensures
that zero compressive stress in considered when the bonded
normal traction is tensile (s̆1

B > 0). The front minus sign
in (16) is needed to express the regularized compressive
traction with tensile positive convention. Finally, in the
present work S2 = 0, as it is assumed that no shear trac-
tion is applied on crack surfaces through the fluid’s viscous
effects.

Lastly, we want to investigate under what conditions,
the hydraulic pressure ph is large enough to cause crack
opening. When the interface is in (partial) contact condi-
tion, which implies δ′ ≤ δ ≤ 0, it transitions to separation
mode if and only if Jv̆S1K ≥ 0, as discussed in §2.2.2. By
plugging the pressure factor regularized form of S1 from
(16) into (11), it is easy to demonstrate that Jv̆S1K ≥ 0 is
equivalent to ph ≥ −s̆1

B. This implies that a hydraulically
loaded interface in (partial) contact transitions to separa-
tion mode if and only if hydraulic pressure is greater than
or equal to the ambient pressure. Clearly, this is the phys-
ical condition that would been expected in the absence of
regularization. That is, the proposed regularization does
not affect the physical contact to separation condition and
only smoothens it.

3 NUMERICAL EXAMPLES

In the first two examples, presented in §2.3, we demon-
strate the need to regularize the application of hydraulic
pressure, especially when a hydraulically loaded crack in-
tersects an unloaded crack. The re-fracture example in
§3.2 demonstrates that the regularization scheme in §2.2.2
can smoothly model transition between contact and sep-
aration modes. We note that the crack path is deter-
mined by finding the direction that maximizes the effec-
tive stress s̆, cf. (2.2.2); the h-adaptive spacetime Dis-
continuous Galerkin method [17] and advanced space-
time adaptive operations [12] are used to solve the un-
derlying elastodynamic problem and allow (hydraulically
loaded) cracks to propagate with arbitrary directions dic-
tated by the aforementioned criterion. For reference for all
problems, rock is under confining pressure of 2.425 MPa
in all directions at initial time and its material proper-
ties are: Young’s modulus E = 20 GPa, mass density
ρ = 2500 kg/m3, and Poisson’s ratio ν = 0.20. The in-
terface properties are: fracture strength s̄ = 2 MPa and
relaxation time τ̃ = 30 ms.

3.1 Hydraulic pressure regularization
Figure 6 shows the schematic of a problem where a hy-
draulically loaded fracture intersects a vertically oriented
unloaded natural fracture. The hydraulic pressure ph
ramps up from ambient pressure of 2.425 MPa to the sus-
tained value of 19.4 MPa in 1 microseconds. Figure 7a
shows the instant at which scattered elastic waves from
propagating hydraulic fracture reach the tips of the verti-
cal crack. Figures 7b to 7d show a time period of less than
25 µs where the leading branch of hydraulically loaded
cracks intersects the vertical crack. In this problem we
intentionally have not regularized the application of hy-
draulic pressure and have used a short ramp time in the
application of hydraulic load to better demonstrate the en-
suing problems. First problem is the sudden jump in the
pressure exerted on the vertical crack faces. At the time of
intersection, which is roughly at 800 µs, hydraulic pressure
is ph ≈ 16 MPa. That is, upon intersection the pressure
instantly jumps from the ambient pressure of 2.425 MPa
to ph ≈ 16 MPa. The spikes in these figures correspond
to a sudden jump in material velocity field induced by
instantaneous application of hydraulic load. The second
problem is that as shown the entire crack line experiences
the hydraulic load right at the time of intersection, cf.
fig. 7b. Aside from these nonphysical responses, the non-
regularized application of hydraulic load results in high
levels of mesh adaptivity due to the induced numerical er-
rors. The sharp and spread velocity spikes in figs. 7(b-f)
and particularly the high velocity spike near the point of
intersection in fig. 7f are some examples of numerical arti-
facts.

For the second problem we use a parameter δ′P = 0.1,
cf. (15), to demonstrate the effect of pressure regulariza-
tion. Similar to previous problem a horizontal and hy-
draulically loaded crack intersects an unloaded vertical
crack and the hydraulic pressure ph ramps up from the
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(a) Stage 1. (b) Stage 2. (c) Stage 3.

(d) Stage 4. (e) Stage 5. (f) Stage 6.
Figure 7: A sequence of solution visualizations of interaction of a hydraulically-loaded moving crack with an
unloaded vertical crack. Lack of pressure regularization results in sharp jumps in stress and velocity. Color
and height field depict strain and kinetic energy densities.

(a) Time t = 563 µs (b) Time t = 717 µs (c) Time t = 922 µs

Figure 8: A sequence of solution visualizations for the interaction of a hydraulically-loaded moving crack with
an unloaded vertical crack. Color field depicts strain energy density.
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(a) Time t ≈ 563 µs (b) Time t ≈ 717 µs (c) Time t ≈ 922 µs

Figure 9: A sequence of space mesh visualizations for the interaction of a hydraulically-loaded moving crack
with an unloaded vertical crack.

ambient pressure of 2.425 MPa to the sustained value of
19.4 MPa in 1 microseconds.

Figure 10: Load history for the hydraulic re-
fracturing problem.

Figures 8 and 9 show the strain energy density solu-
tions and the finite element space meshes for three differ-
ent stages of the problem, respectively. Figures 8a and 9a
show a time slightly after the intersection of the cracks. As
evident, the regularization eliminates instantaneous load-
ing of the vertical crack and the propagation of the pressure
to its entire length.

The next figures show a stage where the hydraulic pres-
sure front has advanced about halfway along the vertical
crack. In fig. 8b we observe process zone regions on the
vertical crack where the interface transitions from ambient
compressive stress state on the outer sides to separation
mode induced by the hydraulic pressure. The high level
of mesh refinement in these zones in fig. 9b corresponds to
high gradients experienced in the values of target compres-
sive traction on the interface. As shown in both figures, the
waves emanated from these contact transition points gen-
erate waves in the bulk with diagonal fronts. Finally, fig.
8c and fig. 9c correspond to a time slightly after the con-
tact transition point reaches the tips of the vertical crack.
The hydraulic load causes the propagation and bifurcation
of new cracks off of these tips.

3.2 Contact and re-fracture in hydraulic
fracturing

Figure 10 shows the time history of applied hydraulic pres-
sure for a domain with geometry similar to that in fig. 6 but
without the vertical crack. The purpose of this example
is to demonstrate that the regularization of η from §2.2.2
smoothens the transition of a hydraulically loaded crack
from separation to contact mode when hydraulic load is
removed and to use the pressure factor concept from §2.3
to gradually re-apply hydraulic pressure on already frac-
tured segments. Similar to previous problems, the loads
are applied rapidly to better demonstrate various contact
and load transition modes.

Figures 11 and 12 show the SDG solution and space
mesh for different stages of this hydraulic re-fracturing
problem. In addition, in fig. 12 we map pressure factor
fp to color on fracture segments to discuss its evolution
in time. Figures 11a and 12a show the solution and mesh
in the early stages of the period when the hydraulic load
is being removed. The existence of regions of high kinetic
and strain energy densities, mapped to height and color
fields respectively, corresponds to a highly transient crack
propagation regime. The diagonal short crack between the
right and top main cracks propagates in shear mode and
is not hydraulically loaded; cf. fig. 12a where fp = 0. The
propagation of this crack is induced by scattered waves
and stress redistribution. Other than this, all the other
cracks are hydraulically loaded and propagate in a tensile-
dominated mode.

Figures 11b and 12b correspond to t = 5 ms where
the hydraulic pressure is completely removed. As a result,
we already observe some microcracks start to transition
to contact mode with the microcrack on the top left side
of the vertical main crack being one example. The figures
11(c-d) and 12(c-d) refer to times slightly after the removal
of the hydraulic load. We observe that the crack surfaces
start to close. See for example the closure of the horizon-
tal crack segment at the far left end of the left main crack.
Local wave scattering events and the transition of fp to
zero can be seen in figs. 11c and 12c. Another interesting
observation is the emittance of acoustic waves in all di-
rections as a result of crack and microcrack closures. The
front of these secondary waves can more clearly be seen in
figs. 11d and 12d.
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(a) Time t = 4.3 ms (b) Time t = 5.0 ms (c) Time t = 5.1 ms

(d) Time t = 5.7 ms (e) Time t = 7.0 ms (f) Time t = 7.6 ms

(g) Time t = 8.6 ms (h) Time t = 9.2 ms (i) Time t = 9.5 ms
Figure 11: A Sequence of solution visualizations for the hydraulic re-fracturing problem. Color and height field
depict strain and kinetic energy densities.

Figures 11(e-f) and 12(e-f) show the transition of the
remaining crack surfaces to contact mode. The progres-
sion of regions with complete crack closure and fp = 0 can
be observed in the figures. It should be emphasized that
the regularization of η, cf. fig. 4, is essential in smooth
separation to contact mode transition. Also, the low level
of mesh refinement in fig. 12(e-f), compared to previous
times, stems from the fact that the entire domain is re-
verting to its spatially uniform ambient pressure field.

Finally, in figs. 11(g-i) and 12(g-i) the cracks start to
transition back to separation mode after the start of the
second stage of hydraulic loading from time t = 8 ms.
Specifically, in the space meshes we observe the progression
of fp from zero to one for all cracks except a few micro-
cracks that remain arrested and in contact. As expected,
cracks further open and propagate in tensile-dominated
mode due to hydraulic loading. One key aspect of the
model for transition from contact to separation mode is
the use of the aperture of all connected segments to a
crack segment, rather than only the crack itself (that is
using cracks CA, BE, and AD in fig. 5 in computing fp for
crack segment AB), in computing δPmax in (14) and sub-
sequently fp in (15). This results in natural propagation

and re-application of hydraulic load from the main four ini-
tial perforations outward to other cracks. Otherwise, all
crack segments would remain in contact mode given that
their opening does not increase in the absence of hydraulic
pressure.

4 CONCLUSIONS

We presented an interfacial damage model for hydraulic
fracturing applications that can seamlessly combine sepa-
ration, contact–stick, and contact–separation modes. Ex-
amples from crack intersection and re-fracturing demon-
strated the capabilities of the proposed separation to con-
tact regularization and aperture-based hydraulic pressure
regularization schemes. They enable smooth transfer of
hydraulic load to a newly intersected crack and smoothen
contact mode transition upon the application or removal
of hydraulic pressure. Finally, we note that if hydraulic
pressure is obtained from a more physical model, the con-
cept of pressure factor may no longer be needed. For ex-
ample, once the connectivity of a crack to a hydraulically
loaded crack is determined from simplicial complex ap-
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(a) Time t ≈ 4.3 ms (b) Time t ≈ 5.0 ms (c) Time t ≈ 5.1 ms

(d) Time t ≈ 5.7 ms (e) Time t ≈ 7.0 ms (f) Time t ≈ 7.6 ms

(g) Time t ≈ 8.6 ms (h) Time t ≈ 9.2 ms (i) Time t ≈ 9.5 ms
Figure 12: A Sequence of space mesh visualizations for the hydraulic re-fracturing problem. Crack segments
are colored based on the value of pressure factor fp with blue to red corresponding to the range fp ∈ [0 1].

proach in [16], the aperture-dependent pressure from lu-
brication equation may already smoothen the transition of
hydraulic load to a new crack.
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